In Acta oncologica (Stockholm, Sweden)
INTRODUCTION : Manual quality assurance (QA) of radiotherapy contours for clinical trials is time and labor intensive and subject to inter-observer variability. Therefore, we investigated whether deep-learning (DL) can provide an automated solution to salivary gland contour QA.
MATERIAL AND METHODS : DL-models were trained to generate contours for parotid (PG) and submandibular glands (SMG). Sørensen-Dice coefficient (SDC) and Hausdorff distance (HD) were used to assess agreement between DL and clinical contours and thresholds were defined to highlight cases as potentially sub-optimal. 3 types of deliberate errors (expansion, contraction and displacement) were gradually applied to a test set, to confirm that SDC and HD were suitable QA metrics. DL-based QA was performed on 62 patients from the EORTC-1219-DAHANCA-29 trial. All highlighted contours were visually inspected.
RESULTS : Increasing the magnitude of all 3 types of errors resulted in progressively severe deterioration/increase in average SDC/HD. 19/124 clinical PG contours were highlighted as potentially sub-optimal, of which 5 (26%) were actually deemed clinically sub-optimal. 2/19 non-highlighted contours were false negatives (11%). 15/69 clinical SMG contours were highlighted, with 7 (47%) deemed clinically sub-optimal and 2/15 non-highlighted contours were false negatives (13%). For most incorrectly highlighted contours causes for low agreement could be identified.
CONCLUSION : Automated DL-based contour QA is feasible but some visual inspection remains essential. The substantial number of false positives were caused by sub-optimal performance of the DL-model. Improvements to the model will increase the extent of automation and reliability, facilitating the adoption of DL-based contour QA in clinical trials and routine practice.
Nijhuis Hanne, van Rooij Ward, Gregoire Vincent, Overgaard Jens, Slotman Berend J, Verbakel Wilko F, Dahele Max
2021-Jan-11
Clinical trial, Deep learning, Quality assurance, Radiotherapy, Salivary glands, Segmentation