Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Heliyon

In this paper, we verify which qualitative banking attributes can determine the level of American state-chartered Financial Institutions (FIs) and evaluate its underlying variables. The methodology followed three procedures of analysis. First, we measured banking efficiency using a two-stage SBM network data envelopment analysis (NDEA). Subsequently, we used machine learning methods to predict efficient FIs from qualitative attributes. Finally, we tested the variables related to the attributes, using a fractionated logistic regression controlled by economic-financial variables. As main results, we found that attributes linked to political-administrative localization criteria were the more important attribute in predicting if the FI was in the efficient group; we confirmed the recent findings of the literature that state that less governmental influence (freedom) is related to more efficient institutions. Besides that, we found that a population with a higher financial education have FIs with higher levels of efficiency.

de Abreu Emmanuel Sousa, Kimura Herbert

2020-Dec

Banking efficiency, Fractional logistic regression, Machine learning, SBM DEA network, State-chartered financial institutions