Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

Accurate and low-cost sleep measurement tools are needed in both clinical and epidemiological research. To this end, wearable accelerometers are widely used as they are both low in price and provide reasonably accurate estimates of movement. Techniques to classify sleep from the high-resolution accelerometer data primarily rely on heuristic algorithms. In this paper, we explore the potential of detecting sleep using Random forests. Models were trained using data from three different studies where 134 adult participants (70 with sleep disorder and 64 good healthy sleepers) wore an accelerometer on their wrist during a one-night polysomnography recording in the clinic. The Random forests were able to distinguish sleep-wake states with an F1 score of 73.93% on a previously unseen test set of 24 participants. Detecting when the accelerometer is not worn was also successful using machine learning ([Formula: see text]), and when combined with our sleep detection models on day-time data provide a sleep estimate that is correlated with self-reported habitual nap behaviour ([Formula: see text]). These Random forest models have been made open-source to aid further research. In line with literature, sleep stage classification turned out to be difficult using only accelerometer data.

Sundararajan Kalaivani, Georgievska Sonja, Te Lindert Bart H W, Gehrman Philip R, Ramautar Jennifer, Mazzotti Diego R, Sabia Séverine, Weedon Michael N, van Someren Eus J W, Ridder Lars, Wang Jian, van Hees Vincent T

2021-Jan-08