Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Acta diabetologica ; h5-index 40.0

AIMS : Increasing evidence suggests that poor glycemic control in diabetic individuals is associated with poor coronavirus disease 2019 (COVID-19) pneumonia outcomes and influences chest computed tomography (CT) manifestations. This study aimed to explore the impact of diabetes mellitus (DM) and glycemic control on chest CT manifestations, acquired using an artificial intelligence (AI)-based quantitative evaluation system, and COVID-19 disease severity and to investigate the association between CT lesions and clinical outcome.

METHODS : A total of 126 patients with COVID-19 were enrolled in this retrospective study. According to their clinical history of DM and glycosylated hemoglobin (HbA1c) level, the patients were divided into 3 groups: the non-DM group (Group 1); the well-controlled blood glucose (BG) group, with HbA1c < 7% (Group 2); and the poorly controlled BG group, with HbA1c ≥ 7% (Group 3). The chest CT images were analyzed with an AI-based quantitative evaluation system. Three main quantitative CT features representing the percentage of total lung lesion volume (PLV), percentage of ground-glass opacity volume (PGV) and percentage of consolidation volume (PCV) in bilateral lung fields were used to evaluate the severity of pneumonia lesions.

RESULTS : Patients in Group 3 had the highest percentage of severe or critical illness, with 12 (32%) cases, followed by 6 (11%) and 7 (23%) cases in Groups 1 and 2, respectively (p = 0.042). The composite endpoints, including death or using mechanical ventilation or admission to the intensive care unit (ICU), were 3 (5%), 5 (16%) and 10 (26%) in Groups 1, 2 and 3, respectively (p = 0.013). The PLV, PGV and PCV in bilateral lung fields were significantly different among the three groups (all p < 0.001): the median PLVs were 12.5% (Group 3), 3.8% (Group 2) and 2.4% (Group 1); the median PGVs were 10.2% (Group 3), 3.6% (Group 2) and 1.9% (Group 1); and the median PCVs were 1.8% (Group 3), 0.3% (Group 2) and 0.1% (Group 1). In the linear regression analyses, which were adjusted for age, sex, BMI, and comorbidities, HbA1c remained positively associated with PLV (β = 0.401, p < 0.001), PGV (β = 0.364, p = 0.001) and PCV (β = 0.472, p < 0.001); this relationship was also observed between fasting blood glucose (FBG) and the three CT quantitative parameters. In the logistic regression analyses, PLV [OR 1.067 (1.032, 1.103)], PGV [OR 1.076 (1.034, 1.120)] and PCV [OR 1.280 (1.110, 1.476)] levels were independent predictors of the composite endpoints, as well as the areas under the ROC (AUCs) for PLV [AUC 0.796 (0.691, 0.900)], PGV [AUC 0.783 (0.678, 0.889)] and PCV [AUC 0.816 (0.722, 0.911)]; the ORs were still significant for CT lesions after adjusting for age, sex and poorly controlled diabetes.

CONCLUSIONS : Increased blood glucose level was correlated with the severity of lung involvement, as evidenced by certain chest CT parameters, and clinical prognosis in diabetic COVID-19 patients. There was a positive correlation between blood glucose level (both HbA1c and FBG) on admission and lung lesions. Moreover, the CT lesion severity by AI quantitative analysis was correlated with clinical outcomes.

Lu Xiaoting, Cui Zhenhai, Pan Feng, Li Lingli, Li Lin, Liang Bo, Yang Lian, Zheng Chuansheng

2021-Jan-08

AI, Blood glucose, COVID-19, CT, DM