Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on medical imaging ; h5-index 74.0

Aging and diabetes lead to protein glycation and cause dysfunction of collagen-containing tissues. The accompanying structural and functional changes of collagen significantly contribute to the development of various pathological malformations affecting the skin, blood vessels, and nerves, causing a number of complications, increasing disability risks and threat to life. In fact, no methods of non-invasive assessment of glycation and associated metabolic processes in biotissues or prediction of possible skin complications, e.g., ulcers, currently exist for endocrinologists and clinical diagnosis. In this publication, utilizing emerging photonics-based technology, innovative solutions in machine learning, and definitive physiological characteristics, we introduce a diagnostic approach capable of evaluating the skin complications of diabetes mellitus at the very earlier stage. The results of the feasibility studies, as well as the actual tests on patients with diabetes and healthy volunteers, clearly show the ability of the approach to differentiate diabetic and control groups. Furthermore, the developed in-house polarization-based hyperspectral imaging technique accomplished with the implementation of the artificial neural network provides new horizons in the study and diagnosis of age-related diseases.

Dremin Viktor, Marcinkevics Zbignevs, Zherebtsov Evgeny, Popov Alexey, Grabovskis Andris, Kronberga Hedviga, Geldnere Kristine, Doronin Alexander, Meglinski Igor, Bykov Alexander

2021-Jan-06