Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Microbial pathogenesis

Dengue viral disease has been reported as an Aedes aegypti mosquito-borne human disease and causing a severe global public health concern. In this study, immunoinformatics methods was deployed for crafting CTL T-cell epitopes as dengue vaccine candidates. The NS1 protein sequence of dengue serotype 1 strain retrieved from the protein database and T-cell epitopes (n = 85) were predicted by the artificial neural network. The conserved epitopes (n = 10) were predicted and selected for intensive computational analysis. The machine learning technique and quantitative matrix-based toxicity analysis assured nontoxic peptide selection. Hidden Markov Model derived Structural Alphabet (SA) based algorithm predicted the 3D molecular structure and all-atom structure of peptide ligand validated by Ramachandran-plot. Three-tier molecular docking approaches were used to predictthe peptide - HLA docking complex. Molecular dynamics (MD) simulation study confirmed the docking complex was stable in the time frame of 100ns. Population coverage analysis predicted the interaction epitope interaction with a particular population of HLA. These results concluded that the computationally designed HTLWSNGVL and FTTNIWLKL epitope peptides could be used as putative agents for the multi CTL T cell epitope vaccine. The vaccine protein sequence expression and translation were analyzed in the prokaryotic vector adapted by codon usage. Such in silico formulated CTL T-cell-based prophylactic vaccines could encourage the commercial development of dengue vaccines.

Krishnan G Sunil, Joshi Amit, Akhtar Nahid, Kaushik Vikas

2021-Jan-02

Dengue, Docking, Epitope, Population coverage, Simulation, Vaccine