Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Plant molecular biology

We proposed an ensemble convolutional neural network model to identify sgRNA high on-target activity in four crops and we used one-hot encoding and k-mers for sequence encoding. As an important component of the CRISPR/Cas9 system, single-guide RNA (sgRNA) plays an important role in gene redirection and editing. sgRNA has played an important role in the improvement of agronomic species, but there is a lack of effective bioinformatics tools to identify the activity of sgRNA in agronomic species. Therefore, it is necessary to develop a method based on machine learning to identify sgRNA high on-target activity. In this work, we proposed a simple convolutional neural network method to identify sgRNA high on-target activity. Our study used one-hot encoding and k-mers for sequence data conversion and a voting algorithm for constructing the convolutional neural network ensemble model sgRNACNN for the prediction of sgRNA activity. The ensemble model sgRNACNN was used for predictions in four crops: Glycine max, Zea mays, Sorghum bicolor and Triticum aestivum. The accuracy rates of the four crops in the sgRNACNN model were 82.43%, 80.33%, 78.25% and 87.49%, respectively. The experimental results showed that sgRNACNN realizes the identification of high on-target activity sgRNA of agronomic data and can meet the demands of sgRNA activity prediction in agronomy to a certain extent. These results have certain significance for guiding crop gene editing and academic research. The source code and relevant dataset can be found in the following link: https://github.com/nmt315320/sgRNACNN.git .

Niu Mengting, Lin Yuan, Zou Quan

2021-Jan-01

Convolutional neural networks, One-hot encoding, k-mer, sgRNA high on-target activity