Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computer methods and programs in biomedicine

In cardiology, ultrasound is often used to diagnose heart disease associated with myocardial infarction. This study aims to develop robust segmentation techniques for segmenting the left ventricle (LV) in ultrasound images to check myocardium movement during heartbeat. The proposed technique utilizes machine learning (ML) techniques such as the active contour (AC) and convolutional neural networks (CNNs) for segmentation. Medical experts determine the consistency between the proposed ML approach, which is a state-of-the-art deep learning method, and the manual segmentation approach. These methods are compared in terms of performance indicators such as the ventricular area (VA), ventricular maximum diameter (VMXD), ventricular minimum diameter (VMID), and ventricular long axis angle (AVLA) measurements. Furthermore, the Dice similarity coefficient, Jaccard index, and Hausdorff distance are measured to estimate the agreement of the LV segmented results between the automatic and visual approaches. The obtained results indicate that the proposed techniques for LV segmentation are useful and practical. There is no significant difference between the use of AC and CNN in image segmentation; however, the AC method could obtain comparable accuracy as the CNN method using less training data and less run-time.

Zhu Xiliang, Wei Yang, Lu Yu, Zhao Ming, Yang Ke, Wu Shiqian, Zhang Hui, Wong Kelvin K L

2020-Dec-17

Active contour, Cardiac ultrasonography, Convolutional neural network, Intra-operative ultrasound, left ventricle