Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Entropy (Basel, Switzerland) Inc. seeks alternative ways to improve manual transactions system of granting employees resources access in the field of data science. The work constructs a modified Artificial Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI) model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data mining to represent entries of Amazon Employees Resources Access (AERA) via information theory. The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features of CSA such as hypermutation and cloning process. This resulting the formation of the proposed model, as an alternative machine learning model to identify factors that should be prioritized in the approval of employees resources applications. Subsequently, reverse analysis method (SATRA) is integrated into our proposed model to extract the relationship of AERA entries based on logical representation. The study will be presented by implementing simulated, benchmark and AERA data sets with multiple performance evaluation metrics. Based on the findings, the proposed model outperformed the other existing methods in AERA data extraction.

Zamri Nur Ezlin, Mansor Mohd Asyraf, Mohd Kasihmuddin Mohd Shareduwan, Alway Alyaa, Mohd Jamaludin Siti Zulaikha, Alzaeemi Shehab Abdulhabib


Boolean satisfiability, clonal selection algorithm, data extraction, human resources management, logic mining