Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Entropy (Basel, Switzerland)

Providing the visual complexity of an image in terms of impact or aesthetic preference can be of great applicability in areas such as psychology or marketing. To this end, certain areas such as Computer Vision have focused on identifying features and computational models that allow for satisfactory results. This paper studies the application of recent ML models using input images evaluated by humans and characterized by features related to visual complexity. According to the experiments carried out, it was confirmed that one of these methods, Correlation by Genetic Search (CGS), based on the search for minimum sets of features that maximize the correlation of the model with respect to the input data, predicted human ratings of image visual complexity better than any other model referenced to date in terms of correlation, RMSE or minimum number of features required by the model. In addition, the variability of these terms were studied eliminating images considered as outliers in previous studies, observing the robustness of the method when selecting the most important variables to make the prediction.

Carballal Adrian, Fernandez-Lozano Carlos, Rodriguez-Fernandez Nereida, Santos Iria, Romero Juan


compression error, correlation, human-computer interaction, machine learning, psychiatry and psychology, sisual complexity, visual stimuli