Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings. IEEE International Symposium on Biomedical Imaging

Accelerating data acquisition in magnetic resonance imaging (MRI) has been of perennial interest due to its prohibitively slow data acquisition process. Recent trends in accelerating MRI employ data-centric deep learning frameworks due to its fast inference time and 'one-parameter-fit-all' principle unlike in traditional model-based acceleration techniques. Unrolled deep learning framework that combines the deep priors and model knowledge are robust compared to naive deep learning based framework. In this paper, we propose a novel multi-scale unrolled deep learning framework which learns deep image priors through multi-scale CNN and is combined with unrolled framework to enforce data-consistency and model knowledge. Essentially, this framework combines the best of both learning paradigms:model-based and data-centric learning paradigms. Proposed method is verified using several experiments on numerous data sets.

Nakarmi Ukash, Cheng Joseph Y, Rios Edgar P, Mardani Morteza, Pauly John M, Ying Leslie, Vasanawala Shreyas S


Magnetic resonance imaging, deep learning, multi-scale CNN, unrolled network