Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of experimental psychology. General

The explosion of data generated during human interactions online presents an opportunity for psychologists to evaluate cognitive models outside the confines of the laboratory. Moreover, the size of these online data sets can allow researchers to construct far richer models than would be feasible with smaller in-lab behavioral data. In the current article, we illustrate this potential by evaluating 3 popular psychological models of generalization on 2 web-scale online data sets typically used to build automated recommendation systems. We show that each psychological model can be efficiently implemented at scale and in certain cases can capture trends in human judgments that standard recommendation systems from machine learning miss. We use these results to illustrate the opportunity Internet-scale data sets offer to psychologists and to underscore the importance of using insights from cognitive modeling to supplement the standard predictive-analytic approach taken by many existing machine learning approaches. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Bourgin David D, Abbott Joshua T, Griffiths Thomas L

2020-Dec-03