Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Radiology ; h5-index 91.0

Background Recognition of salient MRI morphologic and kinetic features of various malignant tumor subtypes and benign diseases, either visually or with artificial intelligence (AI), allows radiologists to improve diagnoses that may improve patient treatment. Purpose To evaluate whether the diagnostic performance of radiologists in the differentiation of cancer from noncancer at dynamic contrast material-enhanced (DCE) breast MRI is improved when using an AI system compared with conventionally available software. Materials and Methods In a retrospective clinical reader study, images from breast DCE MRI examinations were interpreted by 19 breast imaging radiologists from eight academic and 11 private practices. Readers interpreted each examination twice. In the "first read," they were provided with conventionally available computer-aided evaluation software, including kinetic maps. In the "second read," they were also provided with AI analytics through computer-aided diagnosis software. Reader diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis, with the area under the ROC curve (AUC) as a figure of merit in the task of distinguishing between malignant and benign lesions. The primary study end point was the difference in AUC between the first-read and the second-read conditions. Results One hundred eleven women (mean age, 52 years ± 13 [standard deviation]) were evaluated with a total of 111 breast DCE MRI examinations (54 malignant and 57 nonmalignant lesions). The average AUC of all readers improved from 0.71 to 0.76 (P = .04) when using the AI system. The average sensitivity improved when Breast Imaging Reporting and Data System (BI-RADS) category 3 was used as the cut point (from 90% to 94%; 95% confidence interval [CI] for the change: 0.8%, 7.4%) but not when using BI-RADS category 4a (from 80% to 85%; 95% CI: -0.9%, 11%). The average specificity showed no difference when using either BI-RADS category 4a or category 3 as the cut point (52% and 52% [95% CI: -7.3%, 6.0%], and from 29% to 28% [95% CI: -6.4%, 4.3%], respectively). Conclusion Use of an artificial intelligence system improves radiologists' performance in the task of differentiating benign and malignant MRI breast lesions. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Krupinski in this issue.

Jiang Yulei, Edwards Alexandra V, Newstead Gillian M

2020-Oct-20