Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European journal of radiology open

Rationale and objectives : To demonstrate the first experience of a deep learning-based algorithm for automatic quantification of lung parenchymal abnormalities in chest CT of COVID-19 patients and to correlate quantitative results with clinical and laboratory parameters.

Materials and methods : We retrospectively included 60 consecutive patients (mean age, 61 ± 12 years; 18 females) with proven COVID-19 infection undergoing chest CT between March and May 2020. Clinical and laboratory data (within 24 hours before/after chest CT) were recorded. Prototype software using a deep learning algorithm was applied for automatic segmentation and quantification of lung opacities. Percentage of opacity (PO, ground-glass and consolidations) and percentage of high opacity (PHO, consolidations), were defined as 100 times the volume of segmented abnormalities divided by the volume of the lung mask.

Results : Automatic CT analysis of the lung was feasible in all patients (n = 60). The median time to accomplish automatic evaluation was 120 s (IQR: 118-128 s). In four cases (7%), manual corrections were necessary. Patients with need for mechanical ventilation had a significantly higher PO (median 44%, IQR: 23-58% versus 13%, IQR: 10-24%; p = 0.001) and PHO (median: 11%, IQR: 6-21% versus 3%, IQR: 2-7%, p = 0.002) compared to those without. The PO and PHO moderately correlated with c-reactive protein (r = 0.49-0.60, both p < 0.001) and leucocyte count (r = 0.30-0.40, both p = 0.05). PO had a negative correlation with SO2 (r=-0.50, p = 0.001).

Conclusion : Preliminary experience indicates the feasibility of a rapid, automatic quantification tool of lung parenchymal abnormalities in COVID-19 patients using deep learning, with results correlating with laboratory and clinical parameters.

Mergen Victor, Kobe Adrian, Blüthgen Christian, Euler André, Flohr Thomas, Frauenfelder Thomas, Alkadhi Hatem, Eberhard Matthias


COVID-19, computed tomography, deep learning, lung infection