Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in psychology ; h5-index 92.0

Although the individuality of whole-body movements has been suspected for years, the scientific proof and systematic investigation that individuals possess unique movement patterns did not manifest until the introduction of the criteria of uniqueness and persistence from the field of forensic science. Applying the criteria of uniqueness and persistence to the individuality of motor learning processes requires complex strategies due to the problem of persistence in the learning processes. One approach is to examine the learning process of different movements. For this purpose, it is necessary to differentiate between two components of movement patterns: the individual-specific component and the discipline-specific component. To this end, a kinematic analysis of the shot put, discus, and javelin throwing movements of seven high-performance decathletes during a qualification competition was conducted. In total, joint angle waveforms of 57 throws formed the basis for the recognition task of individual- and discipline-specific throwing patterns using a support vector machine. The results reveal that the kinematic throwing patterns of the three disciplines could be distinguished across athletes with a prediction accuracy of up to 100% (57 of 57 throws). In addition, athlete-specific throwing characteristics could also be identified across the three disciplines. Prediction accuracies of up to 52.6% indicated that up to 10 out of 19 throws of a discipline could be assigned to the correct athletes, based on only knowing these athletes from the kinematic throwing patterns in the other two disciplines. The results further suggest that individual throwing characteristics across disciplines are more pronounced in shot put and discus throwing than in javelin throwing. Applications for training and learning practice in sports and therapy are discussed. In summary, the chosen approach offers a broad field of application related to the search of individualized optimal movement solutions in sports.

Horst Fabian, Janssen Daniel, Beckmann Hendrik, Schöllhorn Wolfgang I


high-performance sports, individuality, machine learning, motor learning, pattern recognition, support vector machine, transdisciplinary individuality