Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of biomedical informatics ; h5-index 55.0

Breast cancer is the most common cancer among women such that the existence of a precise and reliable system for the diagnosis of benign or malignant tumors is critical. Nowadays, using the results of Fine Needle Aspiration (FNA) cytology and machine learning techniques, detection and early diagnosis of this cancer can be done with greater accuracy. In this paper, we propose a method consisting of two steps: in the first step, to eliminate the less important features, logistic regression has been used. In the second step, the Group Method Data Handling (GMDH) neural network is used for the diagnosis of benign and malignant samples. To evaluate the performance of the proposed method, three datasets WBCD, WDBC and WPBC are investigated with metrics: precision, the Area Under the ROC (AUC), true positive rate, false positive rate, accuracy and F-criteria. Simulation results show that the proposed method reaches a precision of 99.4% for WBCD, 99.6% for WDBC and a precision of 96.9% for WPBC dataset.

Khandezamin Ziba, Naderan Marjan, Javad Rashti Mohammad

2020-Oct-08

Group Method Data Handling, breast cancer, feature selection, logistic regression, machine learning