Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Applied microbiology and biotechnology

Artificial intelligence (AI) models and optimization algorithms (OA) are broadly employed in different fields of technology and science and have recently been applied to improve different stages of plant tissue culture. The usefulness of the application of AI-OA has been demonstrated in the prediction and optimization of length and number of microshoots or roots, biomass in plant cell cultures or hairy root culture, and optimization of environmental conditions to achieve maximum productivity and efficiency, as well as classification of microshoots and somatic embryos. Despite its potential, the use of AI and OA in this field has been limited due to complex definition terms and computational algorithms. Therefore, a systematic review to unravel modeling and optimizing methods is important for plant researchers and has been acknowledged in this study. First, the main steps for AI-OA development (from data selection to evaluation of prediction and classification models), as well as several AI models such as artificial neural networks (ANNs), neurofuzzy logic, support vector machines (SVMs), decision trees, random forest (FR), and genetic algorithms (GA), have been represented. Then, the application of AI-OA models in different steps of plant tissue culture has been discussed and highlighted. This review also points out limitations in the application of AI-OA in different plant tissue culture processes and provides a new view for future study objectives. KEY POINTS: • Artificial intelligence models and optimization algorithms can be considered a novel and reliable computational method in plant tissue culture. • This review provides the main steps and concepts for model development. • The application of machine learning algorithms in different steps of plant tissue culture has been discussed and highlighted.

Hesami Mohsen, Jones Andrew Maxwell Phineas

2020-Sep-28

Androgenesis, Computational approach, Data-driven model, Embryogenesis, In vitro culture, Machine learning algorithm, Organogenesis, Plant biotechnology, Rhizogenesis, Shoot proliferation