Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of medical imaging and radiation sciences

BACKGROUND AND PURPOSE : The use of AI in the process of CT image reconstruction may improve image quality of resultant images and therefore facilitate low-dose CT examinations.

METHODS : Articles in this review were gathered from multiple databases (Google Scholar, Ovid and Monash University Library Database). A total of 17 articles regarding AI use in CT image reconstruction was reviewed, including 1 white paper from GE Healthcare.

RESULTS : DLR algorithms performed better in terms of noise reduction abilities, and image quality preservation at low doses when compared to other reconstruction techniques.

CONCLUSION : Further research is required to discuss clinical application and diagnostic accuracy of DLR algorithms, but AI is a promising dose-reduction technique with future computational advances.

Zhang Ziyu, Seeram Euclid


Convolutional neural networks, Deep learning, Dose reduction, Generative adversarial networks, Machine learning