Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

Intravenous (IV) medication administration processes have been considered as high-risk steps, because accidents during IV administration can lead to serious adverse effects, which can deteriorate the therapeutic effect or threaten the patient's life. In this study, we propose a multi-modal infusion pump (IP) monitoring technique, which can detect mismatches between the IP setting and actual infusion state and between the IP setting and doctor's prescription in real time using a thin membrane potentiometer and convolutional-neural-network-based deep learning technique. During performance evaluation, the percentage errors between the reference infusion rate (IR) and average estimated IR were in the range of 0.50-2.55%, while those between the average actual IR and average estimated IR were in the range of 0.22-2.90%. In addition, the training, validation, and test accuracies of the implemented deep learning model after training were 98.3%, 97.7%, and 98.5%, respectively. The training and validation losses were 0.33 and 0.36, respectively. According to these experimental results, the proposed technique could provide improved protection functions to IV-administration patients.

Hwang Young Jun, Kim Gun Ho, Sung Eui Suk, Nam Kyoung Won


Infusion pump, convolutional neural network, monitoring, patient safety, real-time