Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical & biological engineering & computing ; h5-index 32.0

Measurement of anatomical structures from ultrasound images requires the expertise of experienced clinicians. Moreover, there are artificial factors that make an automatic measurement complicated. In this paper, we aim to present a novel end-to-end deep learning network to automatically measure the fetal head circumference (HC), biparietal diameter (BPD), and occipitofrontal diameter (OFD) length from 2D ultrasound images. Fully convolutional neural networks (FCNNs) have shown significant improvement in natural image segmentation. Therefore, to overcome the potential difficulties in automated segmentation, we present a novelty FCNN and add a regression branch for predicting OFD and BPD in parallel. In the segmentation branch, a feature pyramid inside our network is built from low-level feature layers for a variety of fetal head in ultrasound images, which is different from traditional feature pyramid building methods. In order to select the most useful scale and reduce scale noise, attention mechanism is taken for the feature's filter. In the regression branch, for the accurate estimation of OFD and BPD length, a new region of interest (ROI) pooling layer is proposed to extract the elliptic feature map. We also evaluate the performance of our method on large dataset: HC18. Our experimental results show that our method can achieve better performance than the existing fetal head measurement methods. Graphical Abstract Deep Neural Network for Fetal Head Measurement.

Li Peixuan, Zhao Huaici, Liu Pengfei, Cao Feidao


Feature pyramid, Fetal head measurement, Fully convolutional networks, ROI pooling, Ultrasound image segmentation