Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

In a digitally enabled healthcare setting, we posit that an individual's current location is pivotal for supporting many virtual care services-such as tailoring educational content towards an individual's current location, and, hence, current stage in an acute care process; improving activity recognition for supporting self-management in a home-based setting; and guiding individuals with cognitive decline through daily activities in their home. However, unobtrusively estimating an individual's indoor location in real-world care settings is still a challenging problem. Moreover, the needs of location-specific care interventions go beyond absolute coordinates and require the individual's discrete semantic location; i.e., it is the concrete type of an individual's location (e.g., exam vs. waiting room; bathroom vs. kitchen) that will drive the tailoring of educational content or recognition of activities. We utilized Machine Learning methods to accurately identify an individual's discrete location, together with knowledge-based models and tools to supply the associated semantics of identified locations. We considered clustering solutions to improve localization accuracy at the expense of granularity; and investigate sensor fusion-based heuristics to rule out false location estimates. We present an AI-driven indoor localization approach that integrates both data-driven and knowledge-based processes and artifacts. We illustrate the application of our approach in two compelling healthcare use cases, and empirically validated our localization approach at the emergency unit of a large Canadian pediatric hospital.

Van Woensel William, Roy Patrice C, Abidi Syed Sibte Raza, Abidi Samina Raza

2020-Aug

Activities of daily living, Ambient assisted living, Ambient sensors, Data fusion, Indoor localization, Machine learning, Self-management, Semantic web, Virtual care, eHealth platform