Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cancers

Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.

Mohammadi Elyas, Benfeitas Rui, Turkez Hasan, Boren Jan, Nielsen Jens, Uhlen Mathias, Mardinoglu Adil


drug repositioning, genomic screens, machine learning, systems medicine, systems pharmacology