Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Bioinformatics (Oxford, England)

MOTIVATION : From evolutionary interference, function annotation to structural prediction, protein sequence comparison has provided crucial biological insights. While many sequence alignment algorithms have been developed, existing approaches often cannot detect hidden structural relationships in the "twilight zone" of low sequence identity. To address this critical problem, we introduce a computational algorithm that performs protein Sequence Alignments from deep-Learning of Structural Alignments (SAdLSA, silent "d"). The key idea is to implicitly learn the protein folding code from many thousands of structural alignments using experimentally determined protein structures.

RESULTS : To demonstrate that the folding code was learned, we first show that SAdLSA trained on pure α-helical proteins successfully recognizes pairs of structurally related pure β-sheet protein domains. Subsequent training and benchmarking on larger, highly challenging data sets show significant improvement over established approaches. For challenging cases, SAdLSA is ∼150% better than HHsearch for generating pairwise alignments and ∼50% better for identifying the proteins with the best alignments in a sequence library. The time complexity of SAdLSA is O(N) thanks to GPU acceleration.

AVAILABILITY : Data sets and source codes of SAdLSA are available free of charge for academic users at http://pwp.gatech.edu/cssb/sadlsa/.

SUPPLEMENTARY INFORMATION : Supplementary data are available at Bioinformatics online.

Gao Mu, Skolnick Jeffrey

2020-Sep-22