Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Magnetic resonance imaging

Versatile soft tissue contrast in magnetic resonance imaging is a unique advantage of the imaging modality. However, the versatility is not fully exploited. In this study, we propose a deep learning-based strategy to derive more soft tissue contrasts from conventional MR images obtained in standard clinical MRI. Two types of experiments are performed. First, MR images corresponding to different pulse sequences are predicted from one or more images already acquired. As an example, we predict T weighted knee image from T2 weighted image and/or T1 weighted image. Furthermore, we estimate images corresponding to alternative imaging parameter values. In a representative case, variable flip angle images are predicted from a single T1 weighted image, whose accuracy is further validated in quantitative T1 map subsequently derived. To accomplish these tasks, images are retrospectively collected from 56 subjects, and self-attention convolutional neural network models are trained using 1104 knee images from 46 subjects and tested using 240 images from 10 other subjects. High accuracy has been achieved in resultant qualitative images as well as quantitative T1 maps. The proposed deep learning method can be broadly applied to obtain more versatile soft tissue contrasts without additional scans or used to normalize MR data that were inconsistently acquired for quantitative analysis.

Wu Yan, Li Debiao, Xing Lei, Gold Garry