Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Annals of translational medicine

Background : Coronavirus disease 2019 (COVID-19) has widely spread worldwide and caused a pandemic. Chest CT has been found to play an important role in the diagnosis and management of COVID-19. However, quantitatively assessing temporal changes of COVID-19 pneumonia over time using CT has still not been fully elucidated. The purpose of this study was to perform a longitudinal study to quantitatively assess temporal changes of COVID-19 pneumonia.

Methods : This retrospective and multi-center study included patients with laboratory-confirmed COVID-19 infection from 16 hospitals between January 19 and March 27, 2020. Mass was used as an approach to quantitatively measure dynamic changes of pulmonary involvement in patients with COVID-19. Artificial intelligence (AI) was employed as image segmentation and analysis tool for calculating the mass of pulmonary involvement.

Results : A total of 581 confirmed patients with 1,309 chest CT examinations were included in this study. The median age was 46 years (IQR, 35-55; range, 4-87 years), and 311 (53.5%) patients were male. The mass of pulmonary involvement peaked on day 10 after the onset of initial symptoms. Furthermore, the mass of pulmonary involvement of older patients (>45 years) was significantly severer (P<0.001) and peaked later (day 11 vs. day 8) than that of younger patients (≤45 years). In addition, there were no significant differences in the peak time (day 10 vs. day 10) and median mass (P=0.679) of pulmonary involvement between male and female.

Conclusions : Pulmonary involvement peaked on day 10 after the onset of initial symptoms in patients with COVID-19. Further, pulmonary involvement of older patients was severer and peaked later than that of younger patients. These findings suggest that AI-based quantitative mass evaluation of COVID-19 pneumonia hold great potential for monitoring the disease progression.

Wang Chao, Huang Peiyu, Wang Lihua, Shen Zhujing, Lin Bin, Wang Qiyuan, Zhao Tongtong, Zheng Hanpeng, Ji Wenbin, Gao Yuantong, Xia Junli, Cheng Jianmin, Ma Jianbing, Liu Jun, Liu Yongqiang, Su Miaoguang, Ruan Guixiang, Shu Jiner, Ren Dawei, Zhao Zhenhua, Yao Weigen, Yang Yunjun, Liu Bo, Zhang Minming


Coronavirus disease 2019 (COVID-19), artificial intelligence (AI), chest CT, temporal changes