Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of neural systems

To realize a brain-machine interface to assist swallowing, neural signal decoding is indispensable. Eight participants with temporal-lobe intracranial electrode implants for epilepsy were asked to swallow during electrocorticogram (ECoG) recording. Raw ECoG signals or certain frequency bands of the ECoG power were converted into images whose vertical axis was electrode number and whose horizontal axis was time in milliseconds, which were used as training data. These data were classified with four labels (Rest, Mouth open, Water injection, and Swallowing). Deep transfer learning was carried out using AlexNet, and power in the high-[Formula: see text] band (75-150[Formula: see text]Hz) was the training set. Accuracy reached 74.01%, sensitivity reached 82.51%, and specificity reached 95.38%. However, using the raw ECoG signals, the accuracy obtained was 76.95%, comparable to that of the high-[Formula: see text] power. We demonstrated that a version of AlexNet pre-trained with visually meaningful images can be used for transfer learning of visually meaningless images made up of ECoG signals. Moreover, we could achieve high decoding accuracy using the raw ECoG signals, allowing us to dispense with the conventional extraction of high-[Formula: see text] power. Thus, the images derived from the raw ECoG signals were equivalent to those derived from the high-[Formula: see text] band for transfer deep learning.

Hashimoto Hiroaki, Kameda Seiji, Maezawa Hitoshi, Oshino Satoru, Tani Naoki, Khoo Hui Ming, Yanagisawa Takufumi, Yoshimine Toshiki, Kishima Haruhiko, Hirata Masayuki


AlexNet, Swallowing, [Formula: see text] band, brain–machine interface, deep transfer learning, electrocorticogram