Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In JAMA network open

Importance : Childhood lead poisoning causes irreversible neurobehavioral deficits, but current practice is secondary prevention.

Objective : To validate a machine learning (random forest) prediction model of elevated blood lead levels (EBLLs) by comparison with a parsimonious logistic regression.

Design, Setting, and Participants : This prognostic study for temporal validation of multivariable prediction models used data from the Women, Infants, and Children (WIC) program of the Chicago Department of Public Health. Participants included a development cohort of children born from January 1, 2007, to December 31, 2012, and a validation WIC cohort born from January 1 to December 31, 2013. Blood lead levels were measured until December 31, 2018. Data were analyzed from January 1 to October 31, 2019.

Exposures : Blood lead level test results; lead investigation findings; housing characteristics, permits, and violations; and demographic variables.

Main Outcomes and Measures : Incident EBLL (≥6 μg/dL). Models were assessed using the area under the receiver operating characteristic curve (AUC) and confusion matrix metrics (positive predictive value, sensitivity, and specificity) at various thresholds.

Results : Among 6812 children in the WIC validation cohort, 3451 (50.7%) were female, 3057 (44.9%) were Hispanic, 2804 (41.2%) were non-Hispanic Black, 458 (6.7%) were non-Hispanic White, and 442 (6.5%) were Asian (mean [SD] age, 5.5 [0.3] years). The median year of housing construction was 1919 (interquartile range, 1903-1948). Random forest AUC was 0.69 compared with 0.64 for logistic regression (difference, 0.05; 95% CI, 0.02-0.08). When predicting the 5% of children at highest risk to have EBLLs, random forest and logistic regression models had positive predictive values of 15.5% and 7.8%, respectively (difference, 7.7%; 95% CI, 3.7%-11.3%), sensitivity of 16.2% and 8.1%, respectively (difference, 8.1%; 95% CI, 3.9%-11.7%), and specificity of 95.5% and 95.1% (difference, 0.4%; 95% CI, 0.0%-0.7%).

Conclusions and Relevance : The machine learning model outperformed regression in predicting childhood lead poisoning, especially in identifying children at highest risk. Such a model could be used to target the allocation of lead poisoning prevention resources to these children.

Potash Eric, Ghani Rayid, Walsh Joe, Jorgensen Emile, Lohff Cortland, Prachand Nik, Mansour Raed