Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Theranostics

Rationale: To reduce upgrading and downgrading between needle biopsy (NB) and radical prostatectomy (RP) by predicting patient-level Gleason grade groups (GGs) of RP to avoid over- and under-treatment. Methods: In this study, we retrospectively enrolled 575 patients from two medical institutions. All patients received prebiopsy magnetic resonance (MR) examinations, and pathological evaluations of NB and RP were available. A total of 12,708 slices of original male pelvic MR images (T2-weighted sequences with fat suppression, T2WI-FS) containing 5405 slices of prostate tissue, and 2,753 tumor annotations (only T2WI-FS were annotated using RP pathological sections as ground truth) were analyzed for the prediction of patient-level RP GGs. We present a prostate cancer (PCa) framework, PCa-GGNet, that mimics radiologist behavior based on deep reinforcement learning (DRL). We developed and validated it using a multi-center format. Results: Accuracy (ACC) of our model outweighed NB results (0.815 [95% confidence interval (CI): 0.773-0.857] vs. 0.437 [95% CI: 0.335-0.539]). The PCa-GGNet scored higher (kappa value: 0.761) than NB (kappa value: 0.289). Our model significantly reduced the upgrading rate by 27.9% (P < 0.001) and downgrading rate by 6.4% (P = 0.029). Conclusions: DRL using MRI can be applied to the prediction of patient-level RP GGs to reduce upgrading and downgrading from biopsy, potentially improving the clinical benefits of prostate cancer oncologic controls.

Shao Lizhi, Yan Ye, Liu Zhenyu, Ye Xiongjun, Xia Haizhui, Zhu Xuehua, Zhang Yuting, Zhang Zhiying, Chen Huiying, He Wei, Liu Cheng, Lu Min, Huang Yi, Ma Lulin, Sun Kai, Zhou Xuezhi, Yang Guanyu, Lu Jian, Tian Jie

2020

Gleason grade groups, deep reinforcement learning, magnetic resonance imaging, prostate cancer, prostate cancer grading