Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In JCO clinical cancer informatics

The volume and complexity of scientific and clinical data in oncology have grown markedly over recent years, including but not limited to the realms of electronic health data, radiographic and histologic data, and genomics. This growth holds promise for a deeper understanding of malignancy and, accordingly, more personalized and effective oncologic care. Such goals require, however, the development of new methods to fully make use of the wealth of available data. Improvements in computer processing power and algorithm development have positioned machine learning, a branch of artificial intelligence, to play a prominent role in oncology research and practice. This review provides an overview of the basics of machine learning and highlights current progress and challenges in applying this technology to cancer diagnosis, prognosis, and treatment recommendations, including a discussion of current takeaways for clinicians.

Nagy Matthew, Radakovich Nathan, Nazha Aziz

2020-Sep