Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in oncology

Chemotherapy-induced polyneuropathy (CIPN), one of the most severe and incapacitating side effects of chemotherapeutic drugs, is a serious concern in breast cancer therapy leading to dose diminution, delay, or cessation. The reversibility of CIPN is of increasing importance since active chemotherapies prolong survival. Clinical assessment tools show that patients experiencing sensorimotor CIPN symptoms not only do they have to cope with loss in autonomy and life quality, but CIPN has become a key restricting factor in treatment. CIPN incidence poses a clinical challenge and has lacked established and efficient therapeutic options up to now. Complementary, non-opioid therapies are sought for both prevention and management of CIPN. In this perspective, we explore the potential that digital interventions have for sensorimotor CIPN rehabilitation in breast cancer patients. Our primary goal is to emphasize the benefits and impact that Virtual Reality (VR) avatars and Machine Learning have in combination in a digital intervention aiming at (1) assessing the complete kinematics of deficits through learning underlying patient sensorimotor parameters, and (2) parameterize a multimodal VR simulation to drive personalized deficit compensation. We support our perspective by evaluating sensorimotor effects of chemotherapy, the metrics to assess sensorimotor deficits, and relevant clinical studies. We subsequently analyse the neurological substrate of VR sensorimotor rehabilitation, with multisensory integration acting as a key element. Finally, we propose a closed-loop patient-centered design recommendation for CIPN sensorimotor rehabilitation. Our aim is to provoke the scientific community toward the development and use of such digital interventions for more efficient and targeted rehabilitation.

Axenie Cristian, Kurz Daria


body sensors, breast cancer, chemotherapy-induced peripheral neuropathy, machine learning, sensorimotor rehabilitation, virtual reality