Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of the Optical Society of America. A, Optics, image science, and vision

This paper presents an on-machine surface defect detection system using light scattering and deep learning. A supervised deep learning model is used to mine the information related to defects from light scattering patterns. A convolutional neural network is trained on a large dataset of scattering patterns that are predicted by a rigorous forward scattering model. The model is valid for any surface topography with homogeneous materials and has been verified by comparing with experimental data. Once the neural network is trained, it allows for fast, accurate, and robust defect detection. The system capability is validated on microstructured surfaces produced by ultraprecision diamond machining.

Liu Mingyu, Fai Cheung Chi, Senin Nicola, Wang Shixiang, Su Rong, Leach Richard