Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Current medicinal chemistry ; h5-index 49.0

Drug-target Interactions (DTIs) prediction plays a central role in drug discovery. Computational methods in DTIs prediction have gotten more attention because carrying out in vitro and in vivo experiments on a large scale is costly and time-consuming. Machine learning methods, especially deep learning, are widely applied to DTIs prediction. In this study, the main goal is to provide a comprehensive overview of deep learning-based DTIs prediction approaches. Here, we investigate the existing approaches from multiple perspectives. We explore these approaches to find out which deep network architectures are utilized to extract features from drug compound and protein sequences. Also, the advantages and limitations of each architecture are analyzed and compared. Moreover, we explore the process of how to combine descriptors for drug and protein features. Likewise, a list of datasets that are commonly used in DTIs prediction is investigated. Finally, current challenges are discussed and a short future outlook of deep learning in DTI prediction is given.

Abbasi Karim, Razzaghi Parvin, Poso Antti, Ghanbari-Ara Saber, Masoudi-Nejad Ali


DTIs prediction approaches, Deep learning, Drug discovery, Drug-target interaction prediction, Machine learning