Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on nanobioscience

The protein fold recognition is one of the important tasks of structural biology, which helps in addressing further challenges like predicting the protein tertiary structures and its functions. Many machine learning works are published to identify the protein folds effectively. However, very few works have reported the fold recognition accuracy above 80% on benchmark datasets. In this study, an effective set of global and local features are extracted from the proposed Convolutional (Conv) and SkipXGram bi-gram (SXGbg) techniques, and the fold recognition is performed using the proposed deep neural network. The performance of the proposed model reported 91.4% fold accuracy on one of the derived low similarity (< 25%) datasets of latest extended version of SCOPe 2.07. The proposed model is further evaluated on three popular and publicly available benchmark datasets such as DD, EDD, and TG and obtained 85.9%, 95.8%, and 88.8% fold accuracies, respectively. This work is first to report fold recognition accuracy above 85% on all the benchmark datasets. The performance of the proposed model has outperformed the best state-of-the-art models by 5% to 23% on DD, 2% to 19% on EDD, and 3% to 30% on TG dataset.

Bankapur Sanjay, Patil Nagamma

2020-Sep-07