Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Science of the total environment

Heavy metal contamination in soil disturbs the chemical, biological, and physical soil conditions and adversely affects the health of living organisms. Visible and near-infrared spectroscopy (VNIRS) shows a potential feasibility for estimating heavy metal elements in soil. Moreover, deep learning models have been shown to successfully deal with complex multi-dimensional and multivariate nonlinear data. Thus, this study implemented a deep learning method on reflectance spectra of soil samples to estimate heavy metal concentrations. A convolutional neural network (CNN) was adopted to estimate arsenic (As), copper (Cu), and lead (Pb) concentrations using measured soil reflectance. In addition, a convolutional autoencoder was utilized as a joint method with the CNN for dimensionality reduction of the reflectance spectra. Furthermore, artificial neural network (ANN) and random forest regression (RFR) models were built for heavy metal estimation. Principal component analysis was utilized for dimensionality reduction of the ANN and RFR models. Among these models, the CNN model with convolutional autoencoder showed the highest accuracies for As, Cu, and Pb estimates, having R2 values of 0.86, 0.74, and 0.82, respectively. The convolutional autoencoder disentangled the relevant features of multiple heavy metal elements and delivered robust features to the CNN model, thereby generating relatively accurate estimates.

Pyo JongCheol, Hong Seok Min, Kwon Yong Sung, Kim Moon Sung, Cho Kyung Hwa

2020-Nov-01

Convolutional neural network, Regression, Soil heavy metal, Visible and near-infrared spectroscopy