Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In PloS one ; h5-index 176.0

In this paper we introduce a real Pashtu handwritten numerals dataset (PHND) having 50,000 scanned images and make publicly available for research and scientific use. Although more than fifty million people in the world use this language for written and oral communication, no significant efforts are devoted to the Pashtu Optical Character Recognition (POCR). We present a new approach for Pahstu handwritten numerals recognition (PHNR) based on deep neural networks. We train Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) on high-frequency numerals for feature extraction and classification. We evaluated the performance of the proposed algorithm on the newly introduced Pashtu handwritten numerals database PHND and Bangla language number database CMATERDB 3.1.1. We obtained best recognition rate of 98.00% and 98.64% on PHND and CMATERDB 3.1.1. respectively.

Khan Khalil, Roh Byeong-Hee, Ali Jehad, Khan Rehan Ullah, Uddin Irfan, Hassan Saqlain, Riaz Rabia, Ahmad Nasir