Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Nature communications ; h5-index 260.0

Deep learning with Convolutional Neural Networks has shown great promise in image-based classification and enhancement but is often unsuitable for predictive modeling using features without spatial correlations. We present a feature representation approach termed REFINED (REpresentation of Features as Images with NEighborhood Dependencies) to arrange high-dimensional vectors in a compact image form conducible for CNN-based deep learning. We consider the similarities between features to generate a concise feature map in the form of a two-dimensional image by minimizing the pairwise distance values following a Bayesian Metric Multidimensional Scaling Approach. We hypothesize that this approach enables embedded feature extraction and, integrated with CNN-based deep learning, can boost the predictive accuracy. We illustrate the superior predictive capabilities of the proposed framework as compared to state-of-the-art methodologies in drug sensitivity prediction scenarios using synthetic datasets, drug chemical descriptors as predictors from NCI60, and both transcriptomic information and drug descriptors as predictors from GDSC.

Bazgir Omid, Zhang Ruibo, Dhruba Saugato Rahman, Rahman Raziur, Ghosh Souparno, Pal Ranadip