Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Digestive disease interventions

The widespread adoption of electronic health records has resulted in an abundance of imaging and clinical information. New data-processing technologies have the potential to revolutionize the practice of medicine by deriving clinically meaningful insights from large-volume data. Among those techniques is supervised machine learning, the study of computer algorithms that use self-improving models that learn from labeled data to solve problems. One clinical area of application for supervised machine learning is within oncology, where machine learning has been used for cancer diagnosis, staging, and prognostication. This review describes a framework to aid clinicians in understanding and critically evaluating studies applying supervised machine learning methods. Additionally, we describe current studies applying supervised machine learning techniques to the diagnosis, prognostication, and treatment of cancer, with a focus on gastroenterological cancers and other related pathologies.

Murali Nikitha, Kucukkaya Ahmet, Petukhova Alexandra, Onofrey John, Chapiro Julius


artificial intelligence, automated diagnosis, machine learning, supervised learning