Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In An international journal on information fusion

Crowd behaviour analysis is an emerging research area. Due to its novelty, a proper taxonomy to organise its different sub-tasks is still missing. This paper proposes a taxonomic organisation of existing works following a pipeline, where sub-problems in last stages benefit from the results in previous ones. Models that employ Deep Learning to solve crowd anomaly detection, one of the proposed stages, are reviewed in depth, and the few works that address emotional aspects of crowds are outlined. The importance of bringing emotional aspects into the study of crowd behaviour is remarked, together with the necessity of producing real-world, challenging datasets in order to improve the current solutions. Opportunities for fusing these models into already functioning video analytics systems are proposed.

Luque Sánchez Francisco, Hupont Isabelle, Tabik Siham, Herrera Francisco


Crowd anomaly detection, Crowd behaviour analysis, Crowd emotions, Deep learning, Models fusion, Review