Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

Erythropoiesis Stimulating Agents (ESAs) have become a standard anemia management tool for End Stage Renal Disease (ESRD) patients. However, dose optimization constitutes an extremely challenging task due to huge inter and intra-patient variability in the responses to ESA administration. Current data-based approaches to anemia control focus on learning accurate hemoglobin prediction models, which can be later utilized for testing competing treatment choices and choosing the optimal one. These methods, despite being proven effective in practice, present several shortcomings which this paper intends to tackle. Namely, they are limited to a small cohort of patients and, even then, they fail to provide suggestions when some strict requirements are not met (such as having a three month history prior to the prediction). Here, recurrent neural networks (RNNs) are used to model whole patient histories, providing predictions at every time step since the very first day. Furthermore, an unprecedented amount of data (∼110,000 patients from many different medical centers in twelve countries, without exclusion criteria) was used to train it, thus allowing it to generalize for every single patient. The resulting model outperforms state-of-the-art Hemoglobin prediction, providing excellent results even when tested on a prospective dataset. Simultaneously, it allows to bring the benefits of algorithmic anemia control to a very large group of patients.

Pellicer-Valero Oscar J, Cattinelli Isabella, Neri Luca, Mari Flavio, Martín-Guerrero José D, Barbieri Carlo

2020-Jul

Anemia, Chronic kidney disease, Deep learning, Erythropoetin stimulating agents, Recurrent neural networks