Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Current cardiology reports

PURPOSE OF REVIEW : To summarize current artificial intelligence (AI)-based applications for coronary artery calcium scoring (CACS) and their potential clinical impact.

RECENT FINDINGS : Recent evolution of AI-based technologies in medical imaging has accelerated progress in CACS performed in diverse types of CT examinations, providing promising results for future clinical application in this field. CACS plays a key role in risk stratification of coronary artery disease (CAD) and patient management. Recent emergence of AI algorithms, particularly deep learning (DL)-based applications, have provided considerable progress in CACS. Many investigations have focused on the clinical role of DL models in CACS and showed excellent agreement between those algorithms and manual scoring, not only in dedicated coronary calcium CT but also in coronary CT angiography (CCTA), low-dose chest CT, and standard chest CT. Therefore, the potential of AI-based CACS may become more influential in the future.

Lee Heon, Martin Simon, Burt Jeremy R, Bagherzadeh Pooyan Sahbaee, Rapaka Saikiran, Gray Hunter N, Leonard Tyler J, Schwemmer Chris, Schoepf U Joseph


Atherosclerotic plaques, Coronary artery disease, Coronary calcium scoring, Deep learning, Machine learning