Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomedical optics express

Automatic segmentation is important for esophageal OCT image processing, which is able to provide tissue characteristics such as shape and thickness for disease diagnosis. Existing automatical segmentation methods based on deep convolutional networks may not generate accurate segmentation results due to limited training set and various layer shapes. This study proposed a novel adversarial convolutional network (ACN) to segment esophageal OCT images using a convolutional network trained by adversarial learning. The proposed framework includes a generator and a discriminator, both with U-Net alike fully convolutional architecture. The discriminator is a hybrid network that discriminates whether the generated results are real and implements pixel classification at the same time. Leveraging on the adversarial training, the discriminator becomes more powerful. In addition, the adversarial loss is able to encode high order relationships of pixels, thus eliminating the requirements of post-processing. Experiments on segmenting esophageal OCT images from guinea pigs confirmed that the ACN outperforms several deep learning frameworks in pixel classification accuracy and improves the segmentation result. The potential clinical application of ACN for detecting eosinophilic esophagitis (EoE), an esophageal disease, is also presented in the experiment.

Wang Cong, Gan Meng, Zhang Miao, Li Deyin

2020-Jun-01