Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Psychonomic bulletin & review

We present a new mathematical formulation of associative learning focused on non-human animals, which we call A-learning. Building on current animal learning theory and machine learning, A-learning is composed of two learning equations, one for stimulus-response values and one for stimulus values (conditioned reinforcement). A third equation implements decision-making by mapping stimulus-response values to response probabilities. We show that A-learning can reproduce the main features of: instrumental acquisition, including the effects of signaled and unsignaled non-contingent reinforcement; Pavlovian acquisition, including higher-order conditioning, omission training, autoshaping, and differences in form between conditioned and unconditioned responses; acquisition of avoidance responses; acquisition and extinction of instrumental chains and Pavlovian higher-order conditioning; Pavlovian-to-instrumental transfer; Pavlovian and instrumental outcome revaluation effects, including insight into why these effects vary greatly with training procedures and with the proximity of a response to the reinforcer. We discuss the differences between current theory and A-learning, such as its lack of stimulus-stimulus and response-stimulus associations, and compare A-learning with other temporal-difference models from machine learning, such as Q-learning, SARSA, and the actor-critic model. We conclude that A-learning may offer a more convenient view of associative learning than current mathematical models, and point out areas that need further development.

Ghirlanda Stefano, Lind Johan, Enquist Magnus


Associative learning, Conditioned reinforcement, Instrumental conditioning, Mathematical model, Outcome revaluation, Pavlovian conditioning