Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Nature communications ; h5-index 260.0

Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimensional and multi-scale signals, making traditional convolutional neural networks (CNNs) computationally costly. Here we propose a highly efficient and resource-saving CNN architecture (SeismicPatchNet) with topological modules and multi-scale-feature fusion units for classifying seismic data, which was discovered by an automated data-driven search strategy. The storage volume of the architecture parameters (0.73 M) is only ~2.7 MB, ~0.5% of the well-known VGG-16 architecture. SeismicPatchNet predicts nearly 18 times faster than ResNet-50 and shows an overwhelming advantage in identifying Bottom Simulating Reflection (BSR), an indicator of marine gas-hydrate resources. Saliency mapping demonstrated that our architecture captured key features well. These results suggest the prospect of end-to-end interpretation of multiple seismic datasets at extremely low computational cost.

Geng Zhi, Wang Yanfei

2020-Jul-03