Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

High-resolution (HR) medical images are preferred in clinical diagnoses and subsequent analysis. However, the acquisition of HR medical images is easily affected by hardware devices. As an effective and trusted alternative method, the super-resolution (SR) technology is introduced to improve the image resolution. Compared with traditional SR methods, the deep learning-based SR methods can obtain more clear and trusted HR images. In this paper, we propose a trusted deep convolutional neural network-based SR method named feedback adaptive weighted dense network (FAWDN) for HR medical image reconstruction. Specifically, the proposed FAWDN can transmit the information of the output image to the low-level features by a feedback connection. To explore advanced feature representation and reduce the feature redundancy in dense blocks, an adaptive weighted dense block (AWDB) is introduced to adaptively select the informative features. Experimental results demonstrate that our FAWDN outperforms the state-of-the-art image SR methods and can obtain more clear and trusted medical images than comparative methods.

Chen Lihui, Yang Xiaomin, Jeon Gwanggil, Anisetti Marco, Liu Kai


Adaptive weighting, Deep convolutional neural network, Feedback mechanism, Medical image super-resolution, Trusted medical image reconstruction