Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of SPIE--the International Society for Optical Engineering

Cardiac magnetic resonance (CMR) imaging is considered the standard imaging modality for volumetric analysis of the right ventricle (RV), an especially important practice in the evaluation of heart structure and function in patients with repaired Tetralogy of Fallot (rTOF). In clinical practice, however, this requires time-consuming manual delineation of the RV endocardium in multiple 2-dimensional (2D) slices at multiple phases of the cardiac cycle. In this work, we employed a U-Net based 2D convolutional neural network (CNN) classifier in the fully automatic segmentation of the RV blood pool. Our dataset was comprised of 5,729 short-axis cine CMR slices taken from 100 individuals with rTOF. Training of our CNN model was performed on images from 50 individuals while validation was performed on images from 10 individuals. Segmentation results were evaluated by Dice similarity coefficient (DSC) and Hausdorff distance (HD). Use of the CNN model on our testing group of 40 individuals yielded a median DSC of 90% and a median 95th percentile HD of 5.1 mm, demonstrating good performance in these metrics when compared to literature results. Our preliminary results suggest that our deep learning-based method can be effective in automating RV segmentation.

Tran Christopher T, Halicek Martin, Dormer James D, Tandon Animesh, Hussain Tarique, Fei Baowei


Cardiac magnetic resonance imaging, Convolutional neural network (CNN), Deep learning, Heart, Image segmentation, Left ventricle, Tetralogy of Fallot