Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of SPIE--the International Society for Optical Engineering

Segmentation of the uterine cavity and placenta in fetal magnetic resonance (MR) imaging is useful for the detection of abnormalities that affect maternal and fetal health. In this study, we used a fully convolutional neural network for 3D segmentation of the uterine cavity and placenta while a minimal operator interaction was incorporated for training and testing the network. The user interaction guided the network to localize the placenta more accurately. We trained the network with 70 training and 10 validation MRI cases and evaluated the algorithm segmentation performance using 20 cases. The average Dice similarity coefficient was 92% and 82% for the uterine cavity and placenta, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of 2% and 9%, respectively. The results demonstrate that the deep learning-based segmentation and volume estimation is possible and can potentially be useful for clinical applications of human placental imaging.

Shahedi Maysam, Dormer James D, T T Anusha Devi, Do Quyen N, Xi Yin, Lewis Matthew A, Madhuranthakam Ananth J, Twickler Diane M, Fei Baowei


Convolutional neural network, fetal magnetic resonance imaging, image segmentation, placenta, uterus