Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on cybernetics

Emotion analysis has been attracting researchers' attention. Most previous works in the artificial-intelligence field focus on recognizing emotion rather than mining the reason why emotions are not or wrongly recognized. The correlation among emotions contributes to the failure of emotion recognition. In this article, we try to fill the gap between emotion recognition and emotion correlation mining through natural language text from Web news. The correlation among emotions, expressed as the confusion and evolution of emotion, is primarily caused by human emotion cognitive bias. To mine emotion correlation from emotion recognition through text, three kinds of features and two deep neural-network models are presented. The emotion confusion law is extracted through an orthogonal basis. The emotion evolution law is evaluated from three perspectives: one-step shift, limited-step shifts, and shortest path transfer. The method is validated using three datasets: 1) the titles; 2) the bodies; and 3) the comments of news articles, covering both objective and subjective texts in varying lengths (long and short). The experimental results show that in subjective comments, emotions are easily mistaken as anger. Comments tend to arouse emotion circulations of love-anger and sadness-anger. In objective news, it is easy to recognize text emotion as love and cause fear-joy circulation. These findings could provide insights for applications regarding affective interaction, such as network public sentiment, social media communication, and human-computer interaction.

Wang Xinzhi, Kou Luyao, Sugumaran Vijayan, Luo Xiangfeng, Zhang Hui

2020-May-12