Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Current medicinal chemistry ; h5-index 49.0

BACKGROUND : Analysis of atomic coordinates of protein-ligand complexes can provide three-dimensional data to generate computational models to evaluate binding affinity and thermodynamic state functions. Application of machine learning techniques can create models to assess protein-ligand potential energy and binding affinity. These methods show superior predictive performance when compared with classical scoring functions available in docking programs.

OBJECTIVE : Our purpose here is to review the development and application of the program SAnDReS. We describe the creation of machine learning models to assess the binding affinity of protein-ligand complexes.

METHOD : SAnDReS implements machine learning methods available in the scikit-learn library. This program is available for download at https://github.com/azevedolab/sandres. SAnDReS uses crystallographic structures, binding, and thermodynamic data to create targeted scoring functions.

RESULTS : Recent applications of the program SAnDReS to drug targets such as Coagulation factor Xa, cyclin-dependent kinases, and HIV-1 protease were able to create targeted scoring functions to predict inhibition of these proteins. These targeted models outperform classical scoring functions.

CONCLUSION : Here, we reviewed the development of machine learning scoring functions to predict binding affinity through the application of the program SAnDReS. Our studies show the superior predictive performance of the SAnDReS-developed models when compared with classical scoring functions available in the programs such as AutoDock4, Molegro Virtual Docker, and AutoDock Vina.

Bitencourt-Ferreira Gabriela, Rizzotto Camila, de Azevedo Junior Walter Filgueira

2020-May-14

Gibbs free energy., Machine learning, SAnDReS, binding affinity, cyclin-dependent kinase, protein-ligand interactions