Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Optics express

Adaptive optics relies on the fast and accurate determination of aberrations but is often hindered by wavefront sensor limitations or lengthy optimization algorithms. Deep learning by artificial neural networks has recently been shown to provide determination of aberration coefficients from various microscope metrics. Here we numerically investigate the direct determination of aberration functions in the pupil plane of a high numerical aperture microscope using an artificial neural network. We show that an aberration function can be determined from fluorescent guide stars and used to improve the Strehl ratio without the need for reconstruction from Zernike polynomial coefficients.

Cumming Benjamin P, Gu Min

2020-May-11