Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BMC medical informatics and decision making ; h5-index 38.0

BACKGROUND : Coronary heart disease (CHD) is a leading cause of morbidity and mortality for breast cancer survivors, yet the joint effect of adverse cardiovascular health (CVH) and cardiotoxic cancer treatments on post-treatment CHD and death has not been quantified.

METHODS : We conducted statistical and machine learning approaches to evaluate 10-year risk of these outcomes among 1934 women diagnosed with breast cancer during 2006 and 2007. Overall CVH scores were classified as poor, intermediate, or ideal for 5 factors, smoking, body mass index, blood pressure, glucose/hemoglobin A1c, and cholesterol from clinical data within 5 years prior to the breast cancer diagnosis. The receipt of potentially cardiotoxic breast cancer treatments was indicated if the patient received anthracyclines or hormone therapies. We modeled the outcomes of post-cancer diagnosis CHD and death, respectively.

RESULTS : Results of these approaches indicated that the joint effect of poor CVH and receipt of cardiotoxic treatments on CHD (75.9%) and death (39.5%) was significantly higher than their independent effects [poor CVH (55.9%) and cardiotoxic treatments (43.6%) for CHD, and poor CVH (29.4%) and cardiotoxic treatments (35.8%) for death].

CONCLUSIONS : Better CVH appears to be protective against the development of CHD even among women who had received potentially cardiotoxic treatments. This study determined the extent to which attainment of ideal CVH is important not only for CHD and mortality outcomes among women diagnosed with breast cancer.

Guo Aixia, Zhang Kathleen W, Reynolds Kristi, Foraker Randi E

2020-May-13

Breast Cancer, Cancer informatics, Cancer treatments, Coronary heart disease, Death, Interactions, Machine learning, Precision medicine